
AD-A259 075Illlll~~ 111111111iII! l

Verification of the Futurebus+ Cache Coherence
Protocol

E. Clarke1 0. Grumberg2 H. Hiraishi3

S. Jha1 D. Long' K. McMillan' L. Ness 4

October 1992
CMU-CS-92-206

School of Computer Science D i
Carnegie Mellon University

Pittsburgh, PA 15213

92-31336

1School of Computer Science, Carnegie Mellon University
2Computer Science Department, The Technion, Israel; currently visiting at AT&T Bell Laboratories
3Computer Science Department, Kyoto Sangyo University, Japan
4Bellcore, Morristown, NJ

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543
under Contract F33615-90-C-1465, ARPA Order No. 7597 and in part by the National Science Foundation
under Grant no. CCR-9dO5992 and in part by the Semiconductor Research Corporation under Con"ract q2•-
-DJ-290-d in part by the U.S.-Israeli Binational Science Foundation and in part by a Japan-U.S. cooperative
research grant from the Japanese Society for the Promotion of Scientific Research and in part by U.S.-Japan
cooperative research grant number INT-90-16694 from the National Science Foundation.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official pclicies, either expressed or implied, of the U.S. government.

PISTRIBUTMUN ..TAE
Approved for Public r•.l•-, .

Distribution ITn4i,"

Abstract

We used a hardware description language to construct a formal model of the cache coherence
protocol described in the draft IEEE Futurebus+ standard. By applying temporal logic
model checking techniques, we found several errors in the standard. The result of our project
is a concise, comprehensible and unambiguous model of the protocol that should be useful
both to the Futurebus+ Working Group members, who are responsible for the protocol, and
to actual designers of Futurebus+ boards.

Accesion For

NTIS CRA&I
DTIC TAB
Uriannou:iced
Jjstitjcation

By
Distribution I

Availability Codes
I-- IAvail and I orDist Special

Al d44

1 Introduction

This paper describes the formalization and verification of the cache coherence protocol de-
scribed in the draft IEEE Futurebus+ standard (IEEE Standard 896.1-1991) (8]. We con-
structed a precise model of the protocol in a hardware description language and then used
temporal logic model checking to show that the model satisfied a formal specification of cache
coherence. In the process of formalizing and verifying the protocol, we discovered a number
of errors and ambiguities. We believe that this is the first time that formal methods have
been used to find nontrivial errors in a proposed IEEE standard. The result of our project
is a concise, comprehensible and unambiguous model of the cache coherence protocol that
should be useful both to the Futurebus+ Working Group members, who are responsible for
the protocol, and to actual designers of Futurebus+ boards. Our experience demonstrates
that hardware description languages and model checking techniques can be used to help
design real industrial standards.

Futurebus+ is a bus architecture for high-performance computers. The goal of the com-
mittee that developed Futurebus+ was to create a public standard for bus protocols that
was unconstrained by the characteristics of any particular processor or device technology
and that would be widely accepted and implemented by vendors. The cache coherence pro-
tocol used in Futurebus+ is designed to insure consistency of data in hierarchical systems
composed of many processors and caches interconnected by multiple bus segments. Such
protocols are notoriously complex and, therefore, quite difficult to debug. Futurebus+ is, in
fact, the first bus standard to include this capability. Although development of the cache
coherence protocol began more than four years ago, to the best of our knowledge all previous
attempts to validate the protocol have been based entirely on informal techniques [7]. In
particular, no attempt has been made to specify the entire protocol formally or to analyze
it using an automatic verification system.

In formalizing and verifying the protocol, we used SMV [9], a temporal logic model
checker based on binary decision diagrams (BDDs) [1]. SMV includes a built-in dataflow-
oriented hardware description language and accepts specifications expressed in the temporal
logic CTL (6]. The tool extracts a finite-state model from an SMV program and uses
an exhaustive state-space search algorithm [3, 4] to determine whether the model satisfies
the specifications. If the model does not satisfy some specification, SMV will produce an
execution trace that shows why the specification is false. SMV represents the transition
relation of the model using BDDs. This representation makes it possible to handle some
examples that have several hundred state variables and more than 1050 reachable states.

The biggest part of the project was using the textual description of the cache coherence
protocol in the standard to develop a formal model for the protocol and to derive CTL
specifications for its correctness. Our model for the cache coherence protocol consists of
2300 lines of SMV code (not counting comments). The model is highly nondeterministic,
both to reduce the complexity of verification (by hiding details) and to cover allowed design
choices (indicated in the standard using the word may). We believe that one of the most
important contributions of our project is the model of the bus bridges that connect bus
segments in hierarchical system configurations. These components are not specified in detail
in the standard. However, without modeling the bus bridges, it is impossible to analyze

hierarchical systems in which the most subtle and complex behaviors occur. By using SMV
and our model of the bridges, we were able to find several potential errors in the hierarchical
protocol. The largest configuration that we verified had three bus segments, eight processors,
and over 10' states.

Our paper is organized as follows: section 2 contains a brief description of the temporal
logic that we use for writing specifications. The basic ideas behind symbolic model checking
are also explained. Section 3 describes the SMV language and model checking tool. The
design of the Futurebus+ cache coherence protocol is discussed in section 4. Several examples
are given to illustrate how the protocol is supposed to work. Section 5 describes the model we
constructed, and section 6 explains how we were able to specify cache cohcrcacc in temporal
logic. In section 7, we describe some of the ambiguities and errors that we found in the
protocol, including the ones that were discovered when the model was extended to include
the bus bridges. The last section outlines some directions for future research.

2 Temporal Logic Model Checking

Temporal logic is a method for expressing the ordering of events in time without introducing
time explicitly. A. Pnueli was the first to use temporal logic for reasoning about concurrent
systems [11]. However, his correctness proofs were constructed by hand, and only very small
systems could be verified. The introduction of temporal logic model checking algorithms in
the early 1980's allowed this type of reasoning to be automated [5, 6, 12]. Since checking that
a single model satisfies a formula is much easier than proving the validity of a formula for
all models, this technique can be implemented very efficiently. Unlike proof-checker based
methods, model checking is completely automatic. More importantly, if a formula is not
true of a model, a model checker can produce a concise execution trace that shows why the
formula is not satisfied.

The particular logic that we use for specifications is a branching-time temporal logic called
CTL ("Computation Tree Logic") [6]. Formulas in CTL are built from three components:
atomic propositions, boolean connectives, and temporal operators. Atomic propositions talk
about the values of individual state variables. The boolean connectives are the standard
ones (A, V, -=). Each temporal operator consists of two parts: a path quantifier (A or E)
and a temporal modality (F, G, X or U). The quantifier indicates whether the operator
denotes a property that should be true of all execution paths from a given state or whether
the property need only hold on some path. The modalities describe the ordering of events
in time along an execution path and have the following intuitive meanings:

1. F W ("W holds sometime in the future") is true of a path if there exists a state on the
path for which the formula ýp is true.

2. G W ("p holds globally") means that ýp is true at every state on the path.

3. X W ("ýp holds in the next state") means that p is true in the second state on the path.

4. W U 0 ("V holds until 4 holds") means that there exists some state on the path for
which 4 is true, and for all states preceding this one, ýp is true.

2

Each formula of the logic is either true or false in a given state. An atomic proposition is
true in a state if the state variable that it refers to has the appropriate value. The truth of a
formula built from boolean connectives depends on the truth of its subformulas in the usual
way. A formula whose top level operator is a temporal operator with a universal (existential)
path quantifier is true whenever all paths (some path) starting at the state have the property
required by the operator's modality. A formula is true of a system if it is true for all the
initial states of the system. The following examples illustrate the expressive power of the
logic.

1. AG(req -- AF ack): it is always the case that if the signal req is high, then eventually
ack will also be high.

2. AG AF enabled: enabled holds infinitely often on every computation path.

3. AG EF restart: from any state, it is possible to get to the restart state.

4. AG(send -- A(send U recv)): it is always the case that if send occurs, then eventually
recv is true, and until that time, send must remain true.

There is a model checking algorithm for CTL that is linear in the size of the state
space of the system under consideration. However, the state space is usually exponential
in the number of components of the system. This state explosion is a major problem in
all methods based on exhaustive state exploration. For this reason, recent model checkers
use an implicit representation for finite-state systems based on binary decision diagrams
(BDDs) [1]. BDDs are a canonical form for boolean formulas that is often substantially
more compact than conjunctive or disjunctive normal form. Using this representation does
not alter the worst case complexity of the algorithm, but in practice, it makes the procedure
much more efficient [2, 3, 41. In a number of cases, we have found that verification time
scales polynomially with the number of components in the system.

Sets of states and transitions are represented with BDDs as follows. Let V be the set
of state components of the system. (Here, we assume all components are boolean.) A state
is determined by an assignment of either 0 or I to each variable in V. Given such a truth
valuation, it is possible to write a boolean expression that is true for exactly that valuation.
For example, given V = {vO, v1, v 2} and the valuation {vO 4- 1, vI +- 1, V2 4- 0}, we obtain
the boolean formula voA vi A -Vv2. This formula can be represented using a BDD. In general, a
boolean formula may be true for many different truth valuations. If we adopt the convention
that a formula represents the set of all valuations that make it true, then we can describe
sets of states by boolean formulas and, hence, by BDDs. In addition to representing sets of
system states, we must be able to represent the transitions that the system can make. To
do this, we extend the previous technique. Let V' be another copy of the state variables. A
valuation for the variables in V and V' can be viewed as designating a pair of states that
determine a transition. We can represent sets of such valuations using BDDs as above.

The symbolic model checking algorithm for CTL takes a formula W and determines the
set of states (represented as a BDD) where each subformula of W (including W itself) is
true. It does this in a bottom up fashion starting from the atomic propositions in the
formula. Handling atomic propositions and logical connectives is straightforward. For the

3

formula , - EX p, we want to find those states having a successor for which p is true. This
is done using an image computation [2, 3]. For a formula such as EF V, we use a fixed point
characterization of the temporal operator:

EF = p V EX EF~p.

The fixed point is computed by iterating, starting from the empty set of states. Other
temporal operators are handled in similar ways.

3 SMV

SMV ("Symbolic Model Verifier") is a tool for checking that finite-state systems satisfy
specifications given in CTL. It uses a BDD-based symbolic model checking algorithm [3, 4].
The hardware description language built into SMV has the following features.

Modules: The user can structure the description of complex systems into modules. Indi-
vidual modules can be instantiated multiple times, and modules can reference variables
declared in other modules. Standard visibility rules are used for naming variables in
hierarchically structured designs. Modules can have parameters, which may be state
components, expressions, or other modules. We used the module facility heavily when
modeling the Futurebus+ protocol; each type of device described in the standard is
represented by a separate module.

Synchronous and interleaving composition: Individual finite-state machines given as
SMV modules can be composed either synchronously or using interleaving. In a syn-
chronous composition, a single step in the composition corresponds to a single step
in each of the components. With interleaving, a step of the composition represents
a step by exactly one component. If the keyword process precedes an instance of a
module, interleaving is used; otherwise synchronous composition is assumed. We used
both types of composition in our model of the Futurebus+ protocol. The devices on a
single bus run synchronously, while separate buses are composed with interleaving.

Nondeterministic transitions: The state transitions in a model may be either determin-
istic or nondeterministic. Nondeterminism can reflect actual choice in the actions of
the system being modeled, or it can be used to describe a more abstract model where
certain details are hidden. The ability to specify nondeterminism is missing from many
hardware description languages, but it is crucial when making high-level models. Some
of the ways we used this ability are described in section 5.

Transition relations: The transition relations of modules can be specified either explicitly
in terms of boolean relations on the current and next state values of state variables,
or implicitly as a set of parallel assignment statements. The parallel assignment state-
ments define the values of variables in the next state in terms of their values in the
current state.

4

Fairness constraints: A module may contain fairness constraints. These constraints are
used to rule out certain infinite executions. For example, suppose we have constructed
an abstract model of a device that nondeterministically responds to a request on one
of its inputs. We wish to ensure that the device must eventually respond to requests.
To do this, we add a fairness constraint that specifies that infinitely often, if a request
is present then an acknowledgement must be given. The execution where a request is
always present but is never acknowledged is eliminated since it does not satisfy this
constraint.

One of the most important features of SMV is its counterezample facility. If the given
model does not satisfy one of its specifications, then SMV produces an execution trace
illustrating why the specification is false. These counterexamples are extremely useful for
debugging. Moreover, for models of moderate complexity, they are generally produced within
a few minutes. This makes SMV extremely effective during the design process.

We will not provide a formal syntax or semantics for the language here; these can be
found in McMillan's thesis [9]. Instead, we consider a small example illustrating part of a
hand-shaking protocol (figure 1). Comments begin with "--" and continue until the end of
the line.

Module definitions begin with the keyword MODULE. The module main is the top-level
module. The modules sender and receiver have the formal parameter input. Variables
are declared using the keyword VAR. In the example, strobe is a boolean variable, while
state is a variable whose value is one of ready, sending or waiting. The VAR statement
is also used to instantiate other modules as shown on lines 3 and 4. In this case, modules
sender and receiver are instantiated with names snd and rec, respectively. A module can
be instantiated multiple times with different names.

Modules can refer to variables defined in other modules by prefixing the variable name
with the name of its module. For example, rec. ack refers to the variable ack defined in the
module instance rec. The modules in this example are composed in a synchronous manner,
but we could use interleaving composition by instantiating them as follows:

VAR
sud: process sender(rec.ack);
rec: process receiver(snd.strobe);

The ASSIGN statement is used to define the initial states and transitions of the model. In
this example, the initial value of the variables state and strobe are ready and 0 respectively.
The next-state value of the variable state is given by a case statement (lines 16-22). The
value of a case statement is determined by evaluating the clauses within the statement in
sequence. Each clause consists of a condition and an expression, which are separated by a
colon. If the condition in the first clause holds, the value of the corresponding expression
determines the value of the case statement. Otherwise, the next clause is evaluated.

Expressions may represent sets of values. Sets can be written explicitly, as shown on
line 17, or can be constructed using the union operator, as shown on line 19. When a set
expression is assigned to a variable, the value of the variable is chosen nondeterministically
from the set. The DEFINE statement can be used to define abbreviations for expressions.
In the example, busy is defined as an abbreviation for state in {sending, waiting}.

5

1 MODULE main -- Handshaking protocol example

2 VAR
3 snd: sender(rec.ack);
4 rec: receiver(snd.strobe);

5 SPEC
6 AG (snd.strobe -> AF rec.ack)

7 MODULE sender(input)

8 VAR
9 strobe: boolean;

10 state: {ready, sending, waiting}; -- An enumerated type

11 DEFINE
12 busy := state in {sending, waiting};

13 ASSIGN
14 init(state) : ready;
15 next(state) :
16 case
17 state-ready: {ready, sending}; -- Nondeterministic choice
18 state-sending & !input: state;
19 state-sending & input: state union waiting;
20 input: waiting;
21 1: state union ready;
22 esac;

23 init(strobe) :- 0;
24 next(strobe) : statensending;

25 FAIRNESS
26 !(state-sending & input) -- If input stays 1, must eventually not send

27 MODULE receiver(input)
28 ...

Figure 1: SMV code for a simple handshaking protocol

This expression is true if the value of state is an element of the set {sending, waiting).
Fairness constraints are given by FAIRNESS statements, and properties to be verified are
given as SPEC statements.

6

4 Overview of the Protocol

The IEEE Futurebus+ Logical Layer Specification is an attempt to define a technology-
independent protocol for several generations of single and multiple-bus multiprocessor sys-
tems. Part of this draft standard is a cache coherence protocol designed to work in a
hierarchically structured multiple-bus system. Under the protocol, coherence is maintained
on individual buses by having the individual caches snoop, or observe, all bus transactions.
Coherence across buses is maintained using bus bridges. Special agents at the ends of the
bridges represent remote caches and memories. In order to increase performance, the proto-
col uses split transactions. When a transaction is split, its completion is delayed and the bus
is freed; at some later time, an explicit response is issued to complete the transaction. This
facility makes it possible to service local requests while remote requests are being processed.

As an example of how the protocol works, we consider some example transactions for
a single cache line in the two processor system shown in figure 2. A cache line is a series
of consecutive memory locations that is treated as a unit for coherence purposes. Initially,

P1 P2

Figure 2: Single bus system

neither processor has a copy of the line in its cache; they are said to be in the invalid state.
Processor P1 issues a read-shared transaction to obtain a readable copy of the data from
memory M. P2 snoops this transaction, and may, if it wishes, also obtain a readable copy;
this is called snarfing. If P2 snarfs, then at the end of the transaction, both caches contain
a shared-unmodified copy of the data. Next, P1 decides to write to a location in the cache
line. In order to maintain coherence, the copy held by P2 must be eliminated. P1 issues an
invalidate transaction on the bus. When P2 snoops this transaction, it purges the line from
its cache. At the end of the invalidate, P1 now has an ezclusive-modified copy of the data.
The standard specifies the possible states of the cache line within each processor and how
this state is updated during each possible transaction.

We now consider a two-bus example to illustrate how the protocol works in hierarchical
systems; see figure 3. Initially, both processor caches are in the invalid state. If processor P2
issues a read-modified to obtain a writable copy of the data, then the memory agent MA
on bus 2 must split the transaction, since it must get the data from the memory on bus 1.
The command is passed down to the cache agent CA, and CA issues the read-modified
on bus 1. Memory M supplies the data to CA, which in turn passes it to MA. MA now
issues a modified-response transaction on bus 2 to complete the original split transaction.
Suppose now that Pl issues a read-shared on bus 1. CA, knowing that a remote cache has
an exclusive-modified copy, intervenes in the transaction to indicate that it will supply the

7

Bus 2

P1 CA

Bus 1

Figure 3: Two bus system

data, and splits the transaction, since it must obtain the data from the remote cache. CA
passes the read-shared to MA, which issues it on bus 2. P2 intervenes and supplies the
data to MA, which passes it to CA. The cache agent performs a shared-response transaction
which completes the original read-shared issued by P1. The standard contains an English
description of the hierarchical protocol, but does not specify the interaction between the
cache agents and memory agents.

5 Modeling the Protocol

The IEEE Standard for Futurebus- -Logical Protocol Specification [8] contains two sections
dealing with the cache coherence protocol. The first, a description section, is written in
English and contains an informal and readable overview of how the protocol operates, but
it does not cover all scenarios. The second, a specification section, is intended to be the
real standard. This section is written using attributes. An attribute is essentially a boolean
variable together with some rules for setting and clearing it. The attributes are more precise,
but they are difficult to read. The behavior of an individual cache or memory is given in
terms of roughly 300 attributes, of which about 45 deal with cache coherence. As an example,
one attribute for cache modules is SHARED-UNMODIFIED:

SHARED-UNMODIFIED. A CACHE or CACHE-AGENT shall set
SHARED-UNMODIFIED and clear
INVALID V EXCLUSIVEUNMODIFIED V EXCLUSIVE-MODIFIED if
MASTER A (INVALID-STATUS A -,ADDRESSONLY A (READ-SHARED v
READ.MODIFIED) V KEEP.COPY A (COPY-BACK v SHAREDRESPONSE)) v
CACHED A (REQUESTER-SHARED A SHARED.RESPONSE A
INVALID-STATUS A -,ADDRESSONLY A TRANSACTION-FLAGSTATUS v

8

SNARFDATA A -'ADDRESSONLY V REQUESTELEXCLUSIVE A
MODIFIED.IESPONSE A -ADDRESS-ONLY A SPLITSATUS V
-,INVALID.STATUS A KEEP-COPY A (READ-SHARED V READ.INVALID)).

A CACHE or CACHE.AGENT may set SHARED -UNMODIFIED and clear
EXCLUSIVE-UNMODIFIED if EXCLUSIVE-UNMODIFIED.

A CACHE or CACHE.AGENT shall not allow modify access to the data in a cache
line if SHARED-UNMODIFIED is set. A CACHE or CACHE.AGENT may allow
read access to the data in a cache line if SHAREDUNMODIFIED is set.

Note that even in the specification section, some aspects of a module's allowed behavior
are described informally. For example, the above attribute specifies a processor's read-write
permissions in English. In addition, some aspects of the protocol, such as the bus bridges,
are not completely specified using attributes.

In order to make the verification feasible, we had to use a number of abstractions. First,
we eliminated a number of the low level details dealing with how modules communicate.
The most significant simplification was to use a model in which one step corresponds to one
complete transaction on one of the buses in the system. This allowed us to hide all of the
handshaking necessary to issue a command. Another example concerns the bus arbitration.
The standard specifies two arbitration schemes, but we used a model in which a bus master
is chosen completely nondeterministically. In addition, the standard describes how models
behave in various exceptional situations, such as when a parity error is observed on the
data bus. However, we did not consider such conditions. The second class of simplifications
was used to reduce the size of some parts of the system. For example, we only considered
the transactions involving a single cache line. This is sufficient since transactions involving
one cache line cannot affect the transactions involving a different cache line. Also, the data
in each cache line was reduced to a single bit. The third class of simplifications involved

eliminating the read-invalid and write-invalid commands. These commands are used in
DMA transfers to and from memory. The protocol does not guarantee coherence for a cache
line when a write-invalid transaction is issued for that line. The last class of abstractions
involved using nondeterminism to simplify the models of some of the components. For
example, processors are assumed to issue read and write requests for a given cache line
nondeterministically. Responses to split transactions are assumed to be issued after arbitrary
delays. Finally, our model of a bus bridge is highly nondeterministic.

Figure 4 shows a part of the SMV program used to model the processor caches. This code
determines how the state of the cache line is updated. Within this code, state components
with upper-case names (CMD, SR, TF) denote bus signals visible to the cache, and components
with lower-case names (state, tf) are under the control of the cache. The first part of the
code (lines 3-13) specifies what may happen when an idle cycle occurs (CMD-none). If the
cache has a shared-unmodified copy of the line, then the line may be nondeterministically
kicked out of the cache unless there is an outstanding request to change the line to exclusive-
modified. If a cache has an exclusive-unmodified copy of the line, it may kick the line out
of the cache or change it to exclusive-modified.

The second part of the code (lines 15-26) indicates how the cache line state is updated
when the cache issues a read-shared transaction (master and CND-read-shared). This
should only happen when the cache does not have a copy of the line. If the transaction is

9

1 next(state) :
2 case
3 CMD-none:
4 case
5 state-shared-unmodif ied:
6 case
7 requester-exclusive: shared-unmodified;
8 1: {invalid, shared-unmodified}; -- Maybe kick line out of cache
9 esac;

10 state-exclusive-unmodified: {invalid, shared-unmodified,
11 exclusive-unmodified, exclusive-modified};
12 1: state;
13 esac;
14 ...

15 master:
16 case
17 CMD-read-shared: -- Cache issues a read-shared
18 case
19 state-invalid:
20 case
21 !SR & !TF: exclusive-unmodified;
22 !SR: shared-unmodified;
23 1: invalid;
24 esac;
25
26 esac;
27 ...
28 esac;
29 ...
30 CMD-raad-shared: -- Cache observes a read-shared
31 case
32 state in {invalid, shared-unmodified}:
33 case
34 !tf: invalid;
35 !SR: shared-unmodified;
36 1: state;
37 esac;
38 ...
39 esac;
40 ...
41 esac;

Figure 4: A portion of the processor cache model

10

not split (!SR), then the data will be supplied to the cache. Either no other caches will snarf
the data (!TF), in which case the cache obtains an exclusive-unmodified copy, or some other
cache snarfs the data, and everyone obtains shared-unmodified copies. If the transaction is
split, the cache line remains in the invalid state.

The last piece of code (lines 30-39) tells how caches respond when they observe another
cache issuing a read-shared transaction. If the observing cache is either invalid or has a
shared-unmodified copy, then it may indicate that it does not want a copy of the line by
deasserting its tf output. In this case, the line becomes invalid. Alternatively, the cache
may assert tf and try to snarf the data. In this case, if the transaction is not split (! SR),
the cache obtains a shared-unmodified copy. Otherwise, the cache stays in its current state.

6 Specifying Cache Coherence

In this section, we discuss the specifications used in verifying the protocol. More exhaustive
specifications are obviously possible; in particular, we have only tried to describe what cache
coherence is, not how it is achieved. The first class of properties is used to check that no
device ever observes an illegal combination of bus signals or an unexpected transaction.
Each device model includes two flags bus-error and error that are used to signal these
conditions. The flag bus-error becomes true when an illegal combination of bus signals (as
defined in section 8.1.6 of the standard) is seen; error becomes true when a device observes
a transaction which should not occur given its internal state. For example, if a processor
cache has a shared-unmodified copy of a cache line, and a read-shared is issued, then no
other cache should intervene in that transaction. If another cache does intervene (which
can only happen when it has an exclusive-modified copy), the error flag in the first cache
becomes true. Thus, we have the following formula for every device d:

AG(-,d.bus-error A -,d.error).

The next class of properties states that if a cache has an exclusive-modified copy of some
cache line, then all other caches should not have copies of that line. The specification includes
the formula

AG(pl.writable --+ -,p2.readable)

for each pair of caches pl and p2. Here, pl.writable is given in a DEFINE statement and is
true when pl is in the exclusive-modified state. Similarly, p2.readable is true when p2 is not
in the invalid state.

Consistency is described by requiring that if two caches have copies of a cache line, then
they agree on the data in that line:

AG(pl.readable A p2.readable -+ pl.data = p2.data).

Similarly, if memory has a copy of the line, then any cache that has a copy must agree with
memory on the data.

AG(p.readable A -,m.memory-line-modified --, p.data = m.data)

11

The variable m.memory-line-modified is false when memory has an up-to-date copy of the
cache line.

The final class of properties is used to check that it is always possible for a cache to get
read or write access to the line.

AG EF p. readable A AG EF p. writable

We would like to give a stronger specification: if a cache issues a read or write request, it
eventually obtains a readable or writable copy. Unfortunately, the model does not guarantee
progress. This is due to the heavy use of nondeterminism, especially in the bus bridges.
We could try to make a more precise model that would ensure progress (by adding fairness
constraints or rewriting parts of the code), but this would be at the expense of an increase
in verification time.

7 Some Errors Found During Verification

In this section, we describe some of the errors that we found while trying to verify the
protocol. First, we describe an error in the single bus protocol. Consider the system shown
in figure 5. The following scenario is not excluded by the standard. Initially, both caches

P1 P2

Figure 5: Single bus system

are invalid. Processor P1 obtains an exclusive-unmodified copy. Next, P2 issues a read-
modified, which P1 splits for invalidation. The memory M supplies a copy of the cache
line to P2, which transitions to the shared-unmodified state. At this point, P1, still having
an exclusive-unmodified copy, transitions to exclusive-modified and writes the cache line.
P1 and P2 are now inconsistent. This bug can be fixed by requiring that P1 transition to
the shared-unmodified state when it splits the read-modified for invalidation. The change
also fixes a number of related errors.

Next, we consider an error in a hierarchical configuration (figure 6). Initially, all caches
are invalid. P1 obtains an exclusive-modified copy of the cache line. It then issues a copy-
back transaction to return the updated cache line to memory, but elects to keep a shared-
unmodified copy as well. In addition, P2 snarfs the data during the copyback and obtains
a shared-unmodified copy. The memory agent MA obtains the data from the copyback, but
does not pass it on yet. P1 now issues an invalidate, and P2 splits the transaction. Some
time later, MA passes the data from the copyback to CA, and CA issues a copyback. P3
snarls the data from the copyback and transitions to the shared-unmodified state. P2 finishes

12

Bus 2

P3 CA

Bus 1

Figure 6: Two bus system

invalidating and issues a modified-response. MA must split this response, since P3 now has
a copy. However, when it does this, it fails to acquire the responder-invalidate attribute that
indicates that it must eventually issue a modified-response of its own. As a result, P1 can
never obtain a writable copy of the cache line. This error can be fixed by either not allowing
copybacks for lines which are in the process of becoming exclusive, or by making MA acquire
the responder-invalidate attribute when splitting the modified-response from P2.

Another error in the hierarchical protocol is the following. P1, P2, and P3 all obtain
shared-unmodified copies of the cache line. PI issues an invalidate transaction that P2 and
MA split. P3 issues an invalidate that CA splits. The bus bridge detects that an invalidate-
invalidate collision has occurred. That is, P3 is trying to invalidate P1, while P1 is trying
to invalidate P3. When this happens, the standard specifies that the collision should be
resolved by having the memory agent invalidate P1. When the memory agent tries to issue
an invalidate for this purpose, P2 sees that there is already a transaction in progress for this
cache line and asserts a busy signal on the bus. MA observes this and acquires the requester-
waiting attribute. When a module has this attribute, it will wait until it sees a completed
response transaction before retrying its command. P2 now finishes invalidating and issues
a modified-response. This is split by MA since P3 is still not invalid. However, MA still
maintains the requester-waiting attribute. At this point, MA will not issue commands since
it is waiting for a completed response, but no such response can occur. The deadlock can
be avoided by having MA clear the requester-waiting attribute when it observes that P2 has
finished invalidating.

We checked configurations with up to three buses and eight processors. The number of
boolean state variables in our models ranged from about 75 to 250, with a corresponding
number of reachable states between 1010 and 103. The number of BDD nodes needed to
represent the model was about 150,000 nodes in the largest models that we tried. In terms of

13

asymptotic performance, the number of nodes needed to represent the system grew linearly
with the number of components on a bus, and quadratically with the number of buses.
Verification times ranged from about a minute to an hour, depending on the configuration.
The most important point is that for models of moderate size, feedback from the verifier
could be obtained in a matter of minutes. This made it possible to find bugs and try possible
fixes very quickly.

8 Conclusions

All formal verification involves making a model of the system under consideration. Saying
that the system is correct is really a claim that this model satisfies the specifications. We
have attempted to make as detailed a model of the Futurebus+ cache coherence protocol as
possible and to check as many system configurations as possible. Nevertheless, more remains
to be done; for example, by combining model checking with induction, it should be possible
to verify arbitrarily configurations. McMillan used this technique when verifying the cache
coherence protocol for the Encore Gigamax [9, 101. We plan to try to use induction with
the Futurebus+ protocol, although this protocol is much more complex than the Gigamax
protocol.

We believe that work on other standards would benefit by collaboration with experts
in specification and automated verification throughout the design process. Use of a formal
language to state requirements should result in significantly faster development of correct
designs. Such a strategy would no doubt result in faster and lower cost implementations by
vendors as well. Finally, model checking is not limited to finite-state models arising from
hardware. Formalization and analysis of other types of systems, such as telecommunications
protocols, should also be possible using SMV. Researchers must keep in mind that the
ultimate test of a new formal verification technique is whether it can handle real examples
like the Futurebus+ protocol.

Acknowledgements

We would like to thank Paul Dixon, of the IEEE Futurebus+ Working Group, for the time
he spent discussing and reviewing our results.

References

[11 R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8), 1986.

[2] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in
symbolic model checking. In Proceedings of the 28th ACM/IEEE Design Automation
Conference. IEEE Computer Society Press, June 1991.

14

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verifi-
cation using symbolic model checking. In Proceedings of the 27th A CM/IEEE Design
Automation Conference. IEEE Computer Society Press, June 1990.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the Fifth Annual Symposium on
Logic in Computer Science. IEEE Computer Society Press, June 1990.

[5] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May
1981, volume 131 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

(6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. A CM Transactions on Program-
ming Languages and Systems, 8(2):244-263, 1986.

[7] P. Dixon. Multilevel cache architectures. Minutes of the Futurebus+ Working Group
meeting, December 1988.

[8] IEEE Computer Society. IEEE Standard for Futurebus+ -Logical Protocol Specification,
March 1992. IEEE Standard 896.1-1991.

[9] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
PhD thesis, Carnegie Mellon University, 1992.

[10] K. L. McMillan and J. Schwalbe. Formal verification of the Encore Gigamax cache
consistency protocol. In Proceedings of the 1991 International Symposium on Shared
Memory Multiprocessors, April 1991.

[11] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,
13:45-60, 1981.

[12] J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CE-
SAR. In Proceedings of the Fifth International Symposium in Programming, 1981.

15

